[image: image4.wmf]

TD <>
Draft DTR/TISPAN-01021-04-01 V.0.0.2 (2004-10)
Technical Report

Mapping of Parlay X Web Services to Parlay/OSA APIs;

Part 4: Short Messaging Mapping;

Sub-part 1: Mapping to User Interaction
[image: image1.png]
Reference

DTR/TISPAN-01021-04-01-OSA

Keywords

API, OSA, SERVICE

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.org
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.

© The Parlay Group 2004.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

4Intellectual Property Rights

Foreword
4
1
Scope
6
2
References
6
3
Definitions and abbreviations
6
3.1
Definitions
6
3.2
Abbreviations
6
4
Mapping Description
7
5
Sequence Diagrams
7
5.1
Send Short Message to One or More Addresses
7
5.2
Notification of Short Message Reception and Retrieval
9
6
Detailed Mapping Information
10
6.1
Operations
10
6.1.1
sendSms
10
6.1.1.1
Mapping to IpUIManager.createUI
10
6.1.1.2
Mapping to IpUI.sendInfoReq
10
6.1.2
sendSmsLogo
11
6.1.2.1
Mapping to IpUIManager.createUI
11
6.1.2.2
Mapping to IpUI.sendInfoReq
11
6.1.3
sendSmsRingtone
11
6.1.3.1
Mapping to IpUIManager.createUI
12
6.1.3.2
Mapping to IpUI.sendInfoReq
12
6.1.2
getSmsDeliveryStatus
12
6.1.2.1
Mapping from IpAppUI.sendInfoRes
13
6.1.2.2
Mapping from IpAppUI.sendInfoErr
13
6.1.2.3
Mapping from IpAppUIManager.reportEventNotification
13
6.1.3
notifySmsReception
14
6.1.3.1
Mapping to IpUIManager.createNotification
14
6.1.3.1
Mapping from IpAppUIManager.reportEventNotification
14
6.1.4
getReceivedSms
15
6.2
Exceptions
15
7
Unmapped Elements
15
8
Additional Notes
15
Annex A (informative): Change history
16

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Technical Report (TR) has been produced by ETSI Technical Committee TISPAN.

The present document is part 4, sub-part 1, of a multi-part deliverable providing an informative mapping of Parlay X Web Services to the Parlay Open Service Access (OSA) APIs, as identified below.

· Part 1 “Common Mapping”

· Part 2 “Third Party Call Mapping”
· Sub-part 1 “Mapping to Generic Call Control”
· Sub-part 2 “Mapping to Multi-Party Call Control”
· Part 3 “Call Notification Mapping"
· Sub-part 1 “Mapping to Generic Call Control”
· Sub-part 2 “Mapping to Multi-Party Call Control”
· Part 4 “Short Messaging Mapping”
· Sub-part 1 “Mapping to User Interaction”
· Sub-part 2 “Mapping to Multi-Media Messaging”
· Part 5 “Multimedia Messaging Mapping”
· Sub-part 1 “Mapping to User Interaction”
· Sub-part 2 “Mapping to Multi-Media Messaging”
· Part 6 “Payment Mapping”
· Part 7 “Account Management Mapping”
· Part 8 “Terminal Status Mapping”
· Part 9 “Terminal Location Mapping”
· Sub-part 1 “Mapping to Mobility User Location”
· Sub-part 2 “Mapping to Mobility User Location CAMEL”
· Part 10 “Call Handling Mapping”
· Sub-part 1 “Mapping to Generic Call Control and User Interaction”
· Sub-part 2 “Mapping to Multi-Party Call Control and User Interaction”
· Sub-part 3 “Mapping to Policy Management”
· Part 11 “Audio Call Mapping”

· Sub-part 1 “Mapping to Generic Call Control and User Interaction”
· Sub-part 2 “Mapping to Multi-Party Call Control and User Interaction”
· Part 12 “Multimedia Conference Mapping”
· Part 13 “Address List Management Mapping”
· TBD: may be a null mapping
· Part 14 “Presence Mapping”

· Sub-part 1 “Mapping to PAM”
· Sub-part 2 “Mapping to Remote SIP/IMS Networks”
The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP.

1
Scope

Should start:

The Parlay X Web Services provide powerful yet simple, highly abstracted, imaginative, telecommunications functions that application developers and the IT community can both quickly comprehend and use to generate new, innovative applications.
One of the following paragraphs should start with:

The Open Service Access (OSA) specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the Parlay/OSA APIs.

The present document is part 4 , sub-part 1, of an informative mapping of Parlay X Web Services to Parlay/OSA APIs.

The present document specifies the mapping of the Parlay X Short Messaging Web Service to the Parlay/OSA User Interaction Service Capability Feature (SCF).

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

[1]
ETSI TR 121 905: "Universal Mobile Telecommunications System (UMTS); Vocabulary for 3GPP Specifications (3GPP TR 21.905)".

[2]
W3C Recommendation (2 May 2001): "XML Schema Part 2: Datatypes".

NOTE:
Available at http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[3]
DTR-TISPAN-01021-01: "Mapping of Parlay X Web Services to Parlay/OSA APIs; Part 1: Common Mapping".

[4]
3GPP TS 23.040: "Technical realization of Short Message Service (SMS)".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in DTR-TISPAN-01021-01 [3] apply.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in DTR-TISPAN-01021-01 [3] and the following apply:

SMS
Short Message Service

SMS-C
Short Message Service - Center

4
Mapping Description

The Short Messaging capability can be implemented with the Parlay/OSA User Interaction SCF.

It is applicable to ETSI OSA 1.x/2.x,. Parlay/OSA 3.x/4.x and 3GPP 4.x/5.x.
5
Sequence Diagrams

5.1 Send Short Message to One or More Addresses
This describes where an application sends a short message to one or more addresses. The use case is the same whether the message is text, ringtone or a logo, however a different method on the Parlay X SendSms interface is used for each. For the diagram below replace sendSms with sendSmsLogo or sendSmsRingtone as appropriate.

The sequence is displayed sequentially for clarity and is not meant to indicate that subsequent messages are sent on delivery of the previous message.

[image: image2.wmf]UI SCS

SMS-X

Application

2.1: createUI

1: sendSms

8: getSmsDeliveryStatus

 4.1: sendInfoRes

5.1:release

6.1: reportEventNotification

3.1: sendInfoReq

2.x: createUI

 4.x: sendInfoRes

5.x:release

6.x: reportEventNotification

3.x: sendInfoReq

7.1: release

7.x: release

The

sendSms

 request

may contain many end

users.

A

UserInteraction

session is created for

each end user and

released when the

message has been sent.

A notification is

received when a

message is delivered.

.

.

.

1. The application requests the sending of a short message to multiple addresses using sendSms.

2. The Parlay X Short Messaging Web Service (SMS-X) creates a UI session for an address in the request.

3. The SMS-X sends the message to the UI SCS and requests a message identifier using the sendInfoReq method.

4. The UI SCS returns a sendInfoRes containing a message identifier for the request.

5. The SMS-X releases the UI session.

6. The UI SCS sends a reportEventNotification containing the message identifier, the message delivery status and the sent message.

7. The SMS-X releases the UI session within the notification and stores the delivery status of the message.

8. The application requests the delivery status of the previous SMS delivery request using getSmsDeliveryStatus.

5.2 Notification of Short Message Reception and Retrieval

[image: image3.wmf]

UI SCS

SMS

-

X

Application

1:

StartSMSNotification

6

: getReceivedSMS

3

.1: reportEventNotification

4

.1: release

2.x: reportEventNotification

3.x: release

5: notifySMSeReception

5

.x: notifySMSReception

7

: stopSMSNotificationn

2

:

createNotification()

8

:

destroyNotification()

Notification only sent if criteria

matches criteria sent in

Start

SMS

Notification

If stop

SMS

Notification stops

the last notification for the

given

address

-

r

anges

destroyNotification is calle

d

1. Notification s started on-line by calling StartSMSNotification on the SMS-X or in an offline step the application registers for the reception of short messages. The request includes the criteria (the first word in the SMS) and a URI for a Web Service implementing the SmsNotification interface on the client application side. The Parlay X Short Messaging Web Service (SMS-X) creates a registration identifier and returns it to the application.

2. A notification is created on the UI SCS. The criteria (the first word in the SMS) may not be set in the UI SCS, so the SMS-X should only send notifySMSReception if the the criteria matches the criteria set in startMessageNotification.

3. The UI SCS sends a reportEventNotification containing the message identifier, the message delivery status and the sent message. SMS-X stores the SMS information.

4. The SMS-X releases the UI session within the notification and stores the delivery status of the message.

5. The SMS-X notifies the application of the received SMS information by invoking the notifySmsReception method on the application Web Service.

6. The application requests a list of received short messages matching the registration identifier using getReceivedSms. The SMS-X returns the list and deletes the SMS information.

7. The notification is stopped by callin stopSMSNotification.

8. If notification is not set for any more criteria destroyNotification is called.

6
Detailed Mapping Information

6.1
Operations

6.1.1 sendSms

The sequence diagram in 5.1 illustrates the flow for the sendSms operation.

The sendSms operation is synchronous from the Parlay X client’s point of view. It is mapped to the following Parlay/OSA methods:

· IpUIManager.createUI

· IpUI.sendInfoReq

6.1.1.1
Mapping to IpUIManager.createUI
The IpUIManager.createUI method is invoked with the following parameters:

	Name
	Type
	Comment

	appUI
	IpAppUIRef
	Reference to callback (internal)

	userAddress
	TpAddress
	Specifies the address to which the SMS should be sent. It is constructed based on the URI provided in the addresses part of sendSmsRequest, mapped as described in DTR-TISPAN-01021-01 [3]

The result from IpUIManager.createUI is of type TpUIIdentifier and is used internally to correlate the callbacks. Specifically it is correlated with the value of the requestIdentifier part returned to the application in the sendSmsResponse message

Parlay exceptions thrown by IpUIManager.createUI result in a Parlay X exception. Refer to the Parlay to Parlay X exception mapping in DTR-TISPAN-01021-01 [3].

6.1.1.2 Mapping to IpUI.sendInfoReq

The IpUI.sendInfoReq method is invoked with the following parameters:

	Name
	Type
	Comment

	userInteraction
SessionID
	TpSessionID
	Reference to callback (internal)

	info
	TpUIInfo
	Specifies the Short Message text to send. The InfoData element is constructed from the message part of sendSmsRequest.

	language
	TpLanguage
	Not mapped.

	variableInfo
	TpUIVariableInfo
Set
	Some mapping support for the optional charging part: i.e. it could be mapped to a VariablePartPrice element(s) of the variableInfo parameter.

Some mapping support for the optional senderName part: i.e. it could be mapped to a VariablePartAddress element of the variableInfo parameter.

	repeatIndicator
	TpInt32
	Not mapped.

	response
Requested
	TpUIResponse
Request
	Not mapped. Set to P_UI_RESPONSE_REQUIRED.

The result from IpUI.sendInfoReq is of type TpAssignmentID and is used internally to correlate the callbacks. Specifically it is correlated with the value of the requestIdentifier part returned to the application in the sendSmsResponse message

Parlay exceptions thrown by IpUI.sendInfoReq result in a Parlay X exception. Refer to the Parlay to Parlay X exception mapping in DTR-TISPAN-01021-01 [3] and in 6.2
Exceptions below.

6.1.2 sendSmsLogo

The sequence diagram in 5.1 illustrates the flow for the sendSmsLogo operation.

The sendSmsLogo operation is synchronous from the Parlay X client’s point of view. It is mapped to the following Parlay/OSA methods:

· IpUIManager.createUI

· IpUI.sendInfoReq

6.1.2.1
Mapping to IpUIManager.createUI
The IpUIManager.createUI method is invoked with the following parameters:

	Name
	Type
	Comment

	appUI
	IpAppUIRef
	Reference to callback (internal)

	userAddress
	TpAddress
	Specifies the address to which the SMS Logo should be sent. It is constructed based on the URI provided in the addresses part of sendSmsLogoRequest, mapped as described in DTR-TISPAN-01021-01 [3]

The result from IpUIManager.createUI is of type TpUIIdentifier and is used internally to correlate the callbacks. Specifically it is correlated with the value of the requestIdentifier part returned to the application in the sendSmsLogoResponse message

Parlay exceptions thrown by IpUIManager.createUI result in a Parlay X exception. Refer to the Parlay to Parlay X exception mapping in DTR-TISPAN-01021-01 [3].

6.1.2.2 Mapping to IpUI.sendInfoReq

The IpUI.sendInfoReq method is invoked with the following parameters:

	Name
	Type
	Comment

	userInteraction
SessionID
	TpSessionID
	Reference to callback (internal)

	info
	TpUIInfo
	Specifies the logo to send. The InfoBinData element is constructed from the image part of sendSmsRequest.

	language
	TpLanguage
	Not mapped.

	variableInfo
	TpUIVariableInfo
Set
	Some mapping support for the optional charging part: i.e. it could be mapped to a VariablePartPrice element(s) of the variableInfo parameter.

Some mapping support for the optional senderName part: i.e. it could be mapped to a VariablePartAddress element of the variableInfo parameter.

Some mapping support for the smsFormat part: i.e. it could be mapped to a VariablePartInteger element of the variableInfo parameter.

	repeatIndicator
	TpInt32
	Not mapped.

	response
Requested
	TpUIResponse
Request
	Not mapped. Set to P_UI_RESPONSE_REQUIRED.

The result from IpUI.sendInfoReq is of type TpAssignmentID and is used internally to correlate the callbacks. Specifically it is correlated with the value of the requestIdentifier part returned to the application in the sendSmsLogoResponse message

Parlay exceptions thrown by IpUI.sendInfoReq result in a Parlay X exception. Refer to the Parlay to Parlay X exception mapping in DTR-TISPAN-01021-01 [3] and in 6.2
Exceptions below.

6.1.3
sendSmsRingtone

The sequence diagram in 5.1 illustrates the flow for the sendSmsRingtone operation.

The sendSmsRingtone operation is synchronous from the Parlay X client’s point of view. It is mapped to the following Parlay/OSA methods:

· IpUIManager.createUI

· IpUI.sendInfoReq

6.1.3.1
Mapping to IpUIManager.createUI
The IpUIManager.createUI method is invoked with the following parameters:

	Name
	Type
	Comment

	appUI
	IpAppUIRef
	Reference to callback (internal)

	userAddress
	TpAddress
	Specifies the address to which the SMS Ringtone should be sent. It is constructed based on the URI provided in the addresses part of sendSmsRingtoneRequest, mapped as described in DTR-TISPAN-01021-01 [3]

The result from IpUIManager.createUI is of type TpUIIdentifier and is used internally to correlate the callbacks. Specifically it is correlated with the value of the requestIdentifier part returned to the application in the sendSmsRingtoneResponse message

Parlay exceptions thrown by IpUIManager.createUI result in a Parlay X exception. Refer to the Parlay to Parlay X exception mapping in DTR-TISPAN-01021-01 [3].

6.1.3.2
Mapping to IpUI.sendInfoReq

The IpUI.sendInfoReq method is invoked with the following parameters:

	Name
	Type
	Comment

	userInteraction
SessionID
	TpSessionID
	Reference to callback (internal)

	info
	TpUIInfo
	Specifies the Ringtone to send. The InfoData element is constructed from the ringtone part of sendSmsRingtoneRequest. Alternatively, the InfoData element is constructed from the ringtone and smsFormat parts of sendSmsRingtoneRequest in the form of a single concatenated string.

	language
	TpLanguage
	Not mapped.

	variableInfo
	TpUIVariableInfo
Set
	Some mapping support for the optional charging part: i.e. it could be mapped to a VariablePartPrice element(s) of the variableInfo parameter.

Some mapping support for the optional senderName part: i.e. it could be mapped to a VariablePartAddress element of the variableInfo parameter.

Alternative mapping support for the smsFormat part: i.e. it could be mapped to a VariablePartInteger element of the variableInfo parameter.

	repeatIndicator
	TpInt32
	Not mapped.

	response
Requested
	TpUIResponse
Request
	Not mapped. Set to P_UI_RESPONSE_REQUIRED.

The result from IpUI.sendInfoReq is of type TpAssignmentID and is used internally to correlate the callbacks. Specifically it is correlated with the value of the requestIdentifier part returned to the application in the sendSmsRingtoneResponse message

Parlay exceptions thrown by IpUI.sendInfoReq result in a Parlay X exception. Refer to the Parlay to Parlay X exception mapping in DTR-TISPAN-01021-01 [3] and in 6.2
Exceptions below.

6.1.2 getSmsDeliveryStatus

The sequence diagram in 5.1 illustrates the flow for the getSmsDeliveryStatus operation.

The getSmsDeliveryStatus operation is synchronous from the Parlay X client’s point of view. It is mapped to the following Parlay/OSA methods:

· IpAppUI.sendInfoRes

· IpAppUI.sendInfoErr

· IpAppUIManager.reportEventNotification

The delivery status provided to the Parlay X client will depend on the timing of the getSmsDeliveryStatus operation invocation. If a message event notification is triggered in the network as a result of an earlier sendSmsXxx-related operation, then the delivery status information provided in the IpAppUIManager.reportEventNotification callback is mapped. If such a notification is not enabled, or it hasn’t triggered, then the delivery status provided in the IpAppUI.sendInfoRes callback is mapped.
6.1.2.1
Mapping from IpAppUI.sendInfoRes
The IpAppUI.sendInfoRes method is invoked with the following parameters:

	Name
	Type
	Comment

	userInteraction
SessionID
	TpSessionID
	Not mapped. [The value provide in the result from IpUIManager.createUI]

	assignmentID
	TpAssignmentID
	Not mapped. [The value provide in the result from IpUI.sendInfoReq]

	response
	TpUIReport
	If the value is P_UI_REPORT_INFO_SENT, then this maps to either the DeliveryUncertain or Delivered values of the DeliveryStatus element of the DeliveryInformation parameter of the deliveryStatus part of a getSmsDeliveryStatusResponse message. There is limited support for the Delivered value as it is dependent upon the SCF implementation and the underlying network protocols (e.g. CAP, MAP): i.e. in the case of MAP (and the receipt of an MT-ForwardShortMessage confirmation message from an MSC), the mapping is to the Delivered value.

6.1.2.2 Mapping from IpAppUI.sendInfoErr

The IpAppUI.sendInfoErr method is invoked with the following parameters:

	Name
	Type
	Comment

	userInteraction
SessionID
	TpSessionID
	Not mapped. [The value provide in the result from IpUIManager.createUI]

	assignmentID
	TpAssignmentID
	Not mapped. [The value provide in the result from IpUI.sendInfoReq]

	error
	TpUIError
	Maps to the DeliveryImpossible value of the DeliveryStatus element of the DeliveryInformation parameter of the deliveryStatus part of a getSmsDeliveryStatusResponse message.

6.1.2.3 Mapping from IpAppUIManager.reportEventNotification

The IpAppUIManager.reportEventNotification method is invoked with the following parameters:

	Name
	Type
	Comment

	userInteraction
	TpUIIdentifier
	Not mapped. Specifies the reference to the User Interaction interface and the sessionID to which the notification relates.

	eventNotification
Info
	TpUIEvent
NotificationInfo
	The mapping to the deliveryStatus part is as follows:

· the OriginatingAddress element is not mapped

· the DestinationAddress element maps to the Address element of the DeliveryInformation parameter

· the ServiceCode element is not mapped

· the DataTypeIndication element is not mapped, but should have a value of P_UI_EVENT_DATA_TYPE_TEXT
· the UIEventData element (a text string) should identify, using a vendor/operator-specific convention, the specific delivery status event being reported, which can be mapped to any possible value of the DeliveryStatus element of the DeliveryInformation parameter.

	assignmentID
	TpAssignmentID
	Not mapped. [The value provide in the result from IpUIManager.createNotification]

The result from IpAppUIManager.reportEventNotification is of type IpAppUIRef and is used internally to correlate with the User Interaction interface instance (i.e. of type IpUI) associated with the event notification.

6.1.3 notifySmsReception

The sequence diagram in 5.2 illustrates the flow for the notifySmsReception operation, which is mapped from the Parlay/OSA method: IpAppUIManager.reportEventNotification.
6.1.3.1 Mapping to IpUIManager.createNotification

The IpUIManager.createNotification is invoked with the following parameters:

	Name
	Type
	Comment

	appUIManager
	IpAppUIManagerRef
	Not mapped. Specifies the reference to the User Interaction interface to which the notification relates.

	eventCriteria
	TpUIEvent
Criteria
	The mapping is as follows:

· the OriginatingAddress is set to be valid for all senders

· the DestinationAddress is set to the MessageServiceActivationNumber

· notihing is mapped to the ServiceCode element

· the Criteria is not mapped, but used for parcing before calling NotifyMessageReception

	assignmentID
	TpAssignmentID
	Not mapped. The AssignmentID returned.

6.1.3.1
Mapping from IpAppUIManager.reportEventNotification
The IpAppUIManager.reportEventNotification method is invoked with the following parameters:

	Name
	Type
	Comment

	userInteraction
	TpUIIdentifier
	Not mapped. Specifies the reference to the User Interaction interface and the sessionID to which the notification relates.

	eventNotification
Info
	TpUIEvent
NotificationInfo
	The mapping to the message part is as follows:

· the OriginatingAddress element maps to the SenderAddress element of the SmsMessage parameter of the message part

· the DestinationAddress element maps to the SenderAddress element of the SmsServiceActivationNumber parameter of the message part

· the ServiceCode element is not mapped

· the DataTypeIndication element is not mapped, but should have a value of P_UI_EVENT_DATA_TYPE_TEXT
· the UIEventData element (a text string) should contain, using a vendor/operator-specific convention, the text contained in the event-related Short Message, which maps to the Message element of the SmsMessage parameter of the message part

	assignmentID
	TpAssignmentID
	Not mapped. [The value provide in the result from IpUIManager.createNotification]

The result from IpAppUIManager.reportEventNotification is of type IpAppUIRef and is used internally to correlate with the User Interaction interface instance (i.e. of type IpUI) associated with the event notification.

6.1.4 getReceivedSms

The sequence diagram in 5.2 illustrates the flow for the getReceivedSms operation. It is not explicitly mapped to any Parlay/OSA method. Instead, the getReceivedSms operation is a bulk retrieval capability for received Short Messages previously and individually delivered to the Parlay X client via the notifySmsReception operation.
6.2
Exceptions

The following table indicates how IpUI.sendInfoReq exception values are mapped to Parlay X exceptions:

	Error Value
	Exception
	Notes

	P_ILLEGAL_ID
	SVC0002
	Invalid input value

	P_ID_NOT_FOUND
	SVC0001
	Service error

7
Unmapped Elements

There are no unmapped elements from the Web Service interface.

8
Additional Notes

No additional notes are provided.

Annex A (informative):
Change history

	Document history

	v.0.0.1
	October 2004
	1st draft of DTR-TISPAN-01021-04-01. Derived in part from PX WG contribution: “MappingOfParlayXToParlayOSA_v03” and from an AePONA product documentation.

	
	
	

	
	
	

[image: image4.wmf]_1160156866.doc

UI SCS

1: sendSms

SMS-X

Application

6.x: reportEventNotification

2.1: createUI

6.1: reportEventNotification

5.x:release

3.x: sendInfoReq

8: getSmsDeliveryStatus

 4.1: sendInfoRes

5.1:release

3.1: sendInfoReq

 4.x: sendInfoRes

2.x: createUI

7.1: release

7.x: release

The sendSms request may contain many end users.

A UserInteraction session is created for each end user and released when the message has been sent.

A notification is received when a message is delivered.

.

.

.

_1160993841.doc

UI SCS

1: StartSMSNotification

SMS-X

Application

2: createNotification()

8: destroyNotification()

3.1: reportEventNotification

6: getReceivedSMS

7: stopSMSNotificationn

3.x: release

2.x: reportEventNotification

5.x: notifySMSReception

5: notifySMSeReception

4.1: release

Notification only sent if criteria matches criteria sent in StartSMSNotification

If stopSMSNotification stops the last notification for the given address-ranges destroyNotification is called

_1065009619.doc

